12.10 Let \(M \) be a T.M. such that \(L(M) \) is not recursive. Suppose that the
decision problem: does \(M \) accept \(w \) is decidable. Then, given \(\Sigma \), we can generate
\(\Sigma^* = \{w_0, w_1, \ldots\} \) in canonical order. By successively asking: does \(M \) accept \(w_i \)
and incrementing \(w_i \) we can determine every word in \(L(M) \) for \(i < N \) for any given
\(N \). But since \(\Sigma^* \) is in canonical order, this generates \(L(M) \) in canonical order, by
incrementing \(N \). But if we can generate \(L \) in canonical order, then it is recursive
by theorem 10.6. Therefore the assumption leads to contradiction.

Many alternative proofs - another approach is to show that solving the decision
problem for a non-recursive language allows us to decide the halting problem, which
we know is undecidable.

12.15 a) Given a C program \(P \) and a specific statement \(s \), is \(s \) executed on input
data \(I \). Reduce the C program to a T.M as follows: let each statement \(s \) be a set of
TM states \(Q_s = \{q|q \in s\} \) of \(M \), which get executed in some sequence, with memory
access being reads/writes to tape. Let the memory stand for the tape, where each
memory address is the number of a particular cell in the tape (reads and writes
to non-adjacent memory addresses imply the machine can move a fixed number
of steps from one address to another, but we have seen T.M.s that can do this, and
we call them as subroutines). Now construct a machine \(M_s \) by replacing a T.M.
state in the set \(Q_s \) by a halt instruction. Then the question does \(s \) get executed by
\(P \) with input \(I \) is equivalent to: does \(M_s \) halt with input \(I \), which is the halting
problem and is known to be unsolvable.

Different constructions are possible.

12.15 b) Same construction as above. But now the problem is equivalent to
does \(M_s \) halt on any input \(I \). This is equivalent to: is the language accepted by \(M_s \)
empty, which is unsolvable. Different constructions are possible.

12.17 Given T.M., \(M \), examine the states of the machine that read a blank
and write a blank. If the start state is not included in a cycle of such states, then
the machine must write a non-blank. Key to this is examining the structure of the
particular machine, rather than its output.

12.21 PCP with two symbols is equivalent to PCP with \(N \) symbols because we
can group symbols into substrings of fixed length, thereby creating more symbols
(for example, with substrings 8 characters long we get the 8 bit ASCII codes). If
we could solve PCP for an alphabet of two symbols, then we could solve it for these
larger groups and this would solve general PCP.