Exercises on Chapter 1

Standard instructions for exercises: try as many as you have time after reading the chapter once. Note: the more you do, the better you will do in exams. You may work as a team. Bring a readable solution to one (1) exercise to class with you on a piece of paper. For example: 3g is enough for one class. Include the names of the people who worked on it and a copy of the problem. Put it on the teacher’s desk before the class starts. You may be asked to present it. I will grade it, comment on it, and return it by the following class.

Note: We will use the 'big-O' notation and theory of graphs in last part of this class. These exercises will review these topics for you. Exercise 3 for example covers the kind of facts that we will use extensively in the last 6 sessions of this class.

1. Prove that if \(x \leq 8 \) then \(2^x \geq 4x^2 \). (hint: page 21 Example 1.17)

2. Prove for all \(c \geq 1 \), there is an \(x_0 \) such that if \(x \geq x_0 \) then \(2^x \geq cx^2 \).

3. Find a definition of the big-O notation and use it to prove these \(O(.) \) facts -- assume \(f, g, h \ldots \) are non-negative functions mapping integers into real numbers:

 (a): \(f(n) \) is \(O(f(n)) \).

 (b): If \(f(n) \) is \(O(g(n)) \) and \(g(n) \) is \(O(h(n)) \) then \(f(n) \) is \(O(h(n)) \).

 (c): For constant \(a \), \(a \cdot f(n) \) is \(O(f(n)) \).

 (d): If for all \(n \) (\(f(n) \leq g(n) \)) then \(f(n) \) is \(O(g(n)) \).

 (e): If \(f(n) \) is \(O(g(n)) \) then \(f(n) + g(n) \) is \(O(g(n)) \).

 (f): For all natural numbers \(p \) and \(q \), if \(p \leq q \) then \(n^p \) in \(O(n^q) \). Hint: Use d above.

 (g): Use a..f above and induction to prove that if \(f(n) \) is a polynomial with highest powered term of form \(an^p \) then \(f(n) \) is \(O(n^p) \).

4. Go to the course web site and find a C++ program called time1.cpp. Read it and think about what it does. Download or save a copy and compile and run it. Test it with several input values. Write up your results and
feelings on this experiment.

5. A graph has a set of nodes N and a set of edges E. Each edge is a pair \(\{n_1, n_2\} \) of nodes. You can check out the various definitions of graph on the web.

a. How many edges can there be if there are \(n \) nodes? Prove your formula by induction.

b. If \(\{n_1, n_2\} \) is in E then \(n_1 \) is connected to \(n_2 \). We say that \((n_1, n_2) \) is a path of length 1 connecting \(n_1 \) to \(n_2 \). A path of length \(p \) is a list of \(p+1 \) nodes \((n_1, n_2, ..., n_{p+1}) \) where each pair of nodes is connected: \(\{n_i, n_{i+1}\} \) is in E for all \(i: 1..p \).

A connected graph has a path from every node to another node. A simple path has no repeated nodes. A cycle has equal first and last nodes. A simple cycle has no other repeated nodes except the first and last. A cycle is Hamiltonian if it is simple and has every node in it. Draw a graph with 8 nodes with a Hamiltonian cycle. First do it the easy way: start with the cycle and then add some extra edges. Then draw a connected graph with 8 nodes and at least 15 edges and try to find a Hamiltonian cycle in it.

c. The degree of separation of two nodes in a graph is the length of the shortest path starting at one and ending at another. Prove that this shortest path must be simple. Bonus: Research the topic of degrees of separation on the web. Prepare and present a 3 minute presentation of what you find.

d. Draw a connected graph with 8 nodes and calculate for every pair of nodes their degree of separation. How long does it take to find out if a given node is with 6 degrees of separation from every other node? Suppose the graph had 20 nodes how long would it take? How would you find the largest degree of separation in a large graph? An example graph: Nodes = `all actors who have played a part in a movie`. Edges=`Two actors who have played parts in the same movie`. How many Nodes? Edges? How would you verify that Kevin Bacon has 6 degrees of separation from every other actor? How would you verify that no other actor is equally central to this graph?